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Abstract. Molecular dynamics simulation studies were performed on four molten metal
tribromides, MBr3, M = La, Ce, Y, Dy. The many-body (polarizable-ion) simulation potentials
were constructed from recent metal trichloride potentials using physically transparent scaling
arguments to account to the change in anion size and polarizability. Comparison was made
with neutron scattering results by constructing the total structure factors from the simulated
partial functions. In addition, difference functions, which exploit the proposed isomorphous
nature of the (Dy, Y) and (La, Ce) pairs, are constructed and compared with experiment. The
structural comparison between different trihalide materials is further extended by producing model
structure factors, obtained by re-weighting and scaling the simulated partial structure factors for the
tribromides, which are then compared with experimental structure factors for certain trichlorides and
tri-iodides. Strong structural similarities are demonstrated between the different halides with similar
cation–anion radius ratios. It is further suggested that the structures exhibited by the trihalides fall
into a small number of characteristic structure classes. The short- and intermediate-range order
within the different structure classes is then exemplified by analysis of the local coordination
environments and the connectivity of the coordination polyhedra.

1. Introduction

The investigation of metal chlorides has tended to dominate both experimental and theoretical
work on the properties of molten metal halides [1,2]. In experimental terms, molten chlorides
are generally easier to prepare than the fluoride, bromide or iodide analogues. The fluorides
have significantly higher melting points and are very corrosive. The bromides and iodides are
relatively susceptible to decomposition at the high temperatures required for the study of the
molten state. The trivalent metal halides are a particularly interesting class of materials on
which to examine liquid structure, since a wide range of cation radii may be scanned, from
La3+ (σ ∼ 1.4 Å) to Al3+ (σ ∼ 0.8 Å), with a commensurate change in liquid state properties.
Within the chlorides, LaCl3 is an ionic melt, whereas AlCl3 is a molecular liquid, and inter-
mediate cation-sized systems (e.g. YCl3) form networks. Recently, a systematic investigation
of the structures of the trivalent metal chlorides has been made by neutron scattering methods
[3–6]. Simulation studies were also performed in parallel with the experimental investigation
[7–9]. The simulation studies show that the range of behaviour exhibited by the chlorides may
be accounted for with a generic, formal-charge ionic interaction model in which the changes in
potential parameters, which distinguish one MCl3 system from another, are derived solely from
the differences in the cation radius. The work focuses attention on the role of anion polarization
effects, which determine how local coordination polyhedra (MCl3−

6 etc) are linked together in
the melt [10], and thereby strongly affect the structure on intermediate length scales.
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In addition to the trichlorides, neutron scattering experiments have now been carried out
on a range of tribromides and tri-iodides [3,11,12]. There are two main themes to the extension
of the simulation work to encompass these systems. Firstly, it is of interest to see whether
the ‘generic’ model can be generalized to allow for a change in anionic properties by simply
changing potential parameters related to the anion radius and polarizability. Secondly, an
examination of the bromides will broaden the insights into the structures which have been
gained on the chloride systems. The simulation studies complement the experiments in
providing real-space structures, since the experimental measurements are primarily of total
structure factors.

In the chlorides the decrease in cation size is accompanied by changes in coordination
number—this does not occur continuously with the ratio of cation to anion radii; rather it
occurs in steps. This is a familiar situation for crystal structures, where the requirement of
long-range order means that only certain coordination numbers are observed, but is less clearly
a necessary condition for a liquid. In the trivalent metal halides, there are two main crystal
structure types. The UCl3 is nine-coordinate and, in the chlorides, is adopted by the large
cations like La3+ and Ce3+ (with ionic radii, σ+ ∼ 1.4 Å, giving a cation:anion radius ratio ρ+−
of ∼0.83). When these systems melt, they appear to retain a high coordination number of 7–8.
The six-coordinate YCl3 (or BiI3, which differs only in the stacking sequence of the close-
packed anions) structure is adopted by a very broad class of smaller cations, ranging from Dy3+

(σ+ ∼ 1.25 Å, ρ+− = 0.72) to Al3+ (σ+ ∼ 0.9 Å, ρ+− = 0.53). On melting, the larger cations
of this class (larger than Sc3+, σ+ ∼ 1.12 Å, ρ+− = 0.66) remain roughly six-coordinate,
whereas the smaller ones (Al3+ and Fe3+) relax to tetrahedral coordination—with interesting
consequences for the phase behaviour [13]. Within each step, of roughly constant coordination
number and therefore of very similar structure at the nearest-neighbour level, a range of liquid
structures are still possible, depending upon how the coordination polyhedra (CP) are linked.
These differences are manifest at the level of the intermediate-range order (IRO), and this is
affected by the anion polarization. Anion polarization controls the M–X–M bond angles [14]
and, as a result, the degree of face-, edge- and corner-sharing between polyhedra. The signature
of the IRO in the experimental structure factors is a prepeak, or first sharp diffraction peak
(FSDP) at �1 Å−1, indicative of ordering on a 5–10 Å length scale. On switching from the
chloride to the bromide not only does the anion radius change, which is expected to change
the preferred coordination number, but so also does the anion polarizability. It is of interest
to see whether the (in principle) independent effects of these changes on the structure can be
discerned by, for example, comparing the structure of a molten bromide (MBr3) with a chloride
(M′Cl3) with the same radius ratio.

In this paper four bromide systems will be considered: DyBr3, YBr3, LaBr3 and CeBr3 for
which the total neutron scattering structure factors have been measured by Wasse and Salmon
[3,11]. These systems were chosen for the experimental study because the similar radii of the
cation pairs {Y3+, Dy3+} and {La3+, Ce3+} would be expected to lead to similar liquid structures.
By exploiting the differences in cation neutron cross-sections and this isomorphous assumption,
difference functions, which, with particular relative scattering lengths, may approximate to
partial structure factors, can be constructed. From comparison with chloride systems of
similar radius ratio, we might expect the LaBr3 and CeBr3 (ρ+− = 0.77) to be relatively
high-coordinate ionic melts, like LaCl3, and DyBr3 (ρ+− = 0.67) and YBr3 (ρ+− = 0.66) to
form networks similar to ScCl3, at the lower end of the band of stability of the six-coordinate
‘step’. In terms of their crystal structures, both LaBr3 and CeBr3 adopt nine-coordinate UCl3
structures, isomorphous with their chlorides, whilst both YBr3 and DyBr3 adopt six-coordinate
BiI3-like structures [15]. Although this structure is different to the YCl3 structure adopted by
the chlorides, both structures are based on MX6 octahedra, differing only in the linkages.



SRO and IRO in molten metal tribromides 10391

2. Potential models and simulation details

2.1. Polarization

The polarization model includes dipoles induced on the anions only, following the simulation
work on the metal trichlorides. Although some of the cations considered in the present work
have appreciable polarizabilities (for example, αLa3+ = 7.673 au [16]) the large size of these
cations, coupled with large excess of anions, means that each cation tends to be symmetrically
coordinated by a relatively large number of anions resulting in near-zero fields at the cation,
and hence only small cation dipoles. Conversely, one expects the anions to have relatively
low coordination numbers and so sit in asymmetric environments leading to significant dipole
polarization effects.

The polarization part of the potential is based upon an explicit representation of the induced
multipoles as variables, comparable to the ion positions, used to characterize the state of the
system and its energy. The induced dipole on each ion, for a given configuration is obtained
by minimization of the potential

Upol = −
∑
i,j

(
µi · T (1)(rij )qjfij (rij ) +

1

2
µi · T (2)(rij ) · µj

)
+

∑
i

kiµ2
i (2.1)

with respect to all the dipoles {µi}. These self-consistent dipoles are the induced dipoles
of the model and Upol evaluated with these dipoles is the polarization energy associated
with that configuration. The final term in the equation is a Drude-like representation of the
energy required to polarize each ion and the force constant ki is determined by the ionic
polarizability (αi):

ki = 1

2αi
. (2.2)

In equation (2.1), qi is the formal ionic charge, and the T (n)-tensors are the normal charge–
dipole and dipole–dipole interaction tensors:

T (1)
α (r) = −rα/r

3 T
(2)
αβ (r) = (3rαrβ − r2δαβ)/r

5. (2.3)

The r-dependence of the charge–dipole interaction is modified, to account for the short-range
induction effects uncovered in electronic structure calculations [17,18], by the factor fij (rij ),
which depends on the identities of the ions involved and which is a function of their separation.
A suitable form for this function has been found to be

fij (r) = 1 − cf
k
f
max∑
k=0

(bf r)k

k!
e−bf r (2.4)

(as suggested by the Tang–Toennies dispersion ‘damping’ functions [19]). This function
switches from the large-r value of 1 (meaning that the charge–dipole interaction regains pure
Coulombic form in this limit) to 1−cf at r = 0 with a range determined by bf . The parameters
cf and kfmax allow for further flexibility in these functions to transfer effectively to quadrupole
interactions [17,18]. Since these are not our concern here we follow the metal trichloride work
by setting cf = 1 and kmax = 4.

To parametrize the polarization model we require both an anion polarizability and a set
of anion–cation short-range damping parameters (SRDP), bf . The dipole polarizability of the
Br− ion is taken as 30.0 au consistent with typical in-crystal alkali halide values [16] and the
experimental refractive index of LaBr3 [20]. Recent ab initio work [17, 18] has shown how
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the SRDPs scale in a physically transparent manner from one system to another within a given
stoichiometry with the sum of ion radii. Thus,

bf = d
f
−

σ+ + σ−
(2.5)

wheredf− is a property of the anion. df− is obtained from the ab initio calculations by considering
sets of specific distortions of nearest-neighbour cations about a central anion and fitting the
short-range induced dipoles to equation (2.4). Furthermore, these calculations show that the
scaling arguments hold for different halide ions [17, 18]. As a result of these considerations,
the damping parameters used here are scaled from those used to reproduce the metal trichloride
structures [7] and are given in table 1.

Table 1. Potential parameters for the MBr3 systems scaled from the corresponding metal trichloride
parameter sets.

Ion pair aij /au σ /Å Bij /au C
ij

6 /au b/au

Br–Br 1.260 1.83 46.2 333.084 —
La–Br 2.439 1.42 18342.1 142.788 1.209
Ce–Br 2.439 1.40 16726.8 142.788 1.216
Dy–Br 2.439 1.22 7296.4 142.788 1.288
Y–Br 2.439 1.20 6653.9 65.064 1.296

2.2. Short-range parameters

The non-polarization aspects of the potential are given by pair potentials of Born–Mayer type:

u
ij

BM(r
ij ) = Bije−aij (rij +

QiQj

rij
− C

ij

6

rij
6

(2.6)

where Bij and aij represent the range and ‘hardness’ of the repulsive wall respectively, and C6

is the dipole–dipole dispersion parameter. The short-range repulsion parameters are derived
from those used to model the chlorides by rescaling in terms of the difference in anion radii
(σCl− = 1.70 Å compared with σBr− = 1.83 Å). Thus,

BMBr = BMCle
a "σ (2.7)

where "σ = σBr− − σCl− . Table 1 lists the repulsion parameters derived in this manner along
with the ion radii used. The hardness of the repulsive wall, a, is assumed constant throughout
for all anion–cation pairs, and the same as that from the metal trichloride simulations.

The dispersion terms are included up to the dipole–dipole interactions and are parametrized
from the bromide polarizability (30.0 au) coupled with ab initio cation polarizabilities [16],
where available, using the Slater–Kirkwood formula [21]. The polarizabilities for the Dy3+

and Ce3+ ions are not available and so the dispersion parameters are derived assuming the same
polarizability as the La3+ ion reflecting their closeness in the periodic table.

2.3. Simulation details

Simulations are performed on systems of 125 molecules (125 M3+ and 375 Br− ions) at
densities and temperatures corresponding to the experimental neutron scattering conditions:
LaBr3, 4.481 g cm−3 (1083 K); CeBr3, 4.496 g cm−3 (1053 K); DyBr3, 4.15 g cm−3 (1190 K);
YBr3, 3.45 g cm−3 (1213 K). Run times in excess of 100 ps are used in all cases. Ewald
summations are used to treat the charge–charge, charge–dipole and dipole–dipole interactions.
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Partial (Ashcroft–Langreth) structure factors Sαβ(k), can be calculated both by directly
averaging over the correlation functions of the Fourier components of the ion densities:

Sαβ(k) = (NαNβ)
−1/2

〈 ∑
i∈α

∑
j∈β

exp[ik · rij ]

〉
(2.8)

and also by Fourier transformation of the partial pair distribution functions (pdf):

Sαβ(k) = δαβ + 4πn0
√
cαcβ

∫
dr (gαβ(r) − 1)r

sin(kr)

k
(2.9)

where cα is the mole fraction of species α and n0 is the ionic number density. At low k, the
former method (when using k-vectors commensurate with the simulation cell) gives a more
reliable structure factor, since it is free of truncation errors. The functions displayed in the
current work are obtained by combining the direct averages, for k � 2 Å−1, with the Fourier
transformed pdfs for larger k-values.

3. Comparison with experimental structure factors

The total (neutron-weighted) structure factor, for comparison with experiment, is given by

F(k) = b2
McM[SMM(k) − 1] + 2bBrbM

√
cBrcMSMBr(k) + b2

BrcCl[SBrBr(k) − 1] (3.1)

where bα is the coherent neutron scattering length of species α. Neutron scattering lengths are
given in table 2 (reference [22]).

Table 2. The neutron scattering lengths [22] used in the calculations of the weighted structure
factors.

Species Br Cl I La Ce Dy Y Sc

b/fm 6.795 9.5770 5.28 8.24 4.84 16.9 7.75 12.29

Approximations to the partial structure factors can be obtained from the experimental data
by taking differences between structure factors for systems with very similar physicochemical
properties. For example, Wasse and Salmon [11] have applied this principle to their neutron
scattering data for LaX3 and CeX3 (X = Cl, Br, I), noting that the ionic radii of La and Ce are
very similar. They assume that LaBr3/CeBr3 and YBr3/DyBr3 are isomorphous pairs, differing
only in the neutron scattering lengths of the cations.

If, for example, SLaLa(k) = SCeCe(k) = SMM(k) and SLaBr(k) = SCeBr(k) = SMBr(k), then
the first-order difference function "M(k), in terms of Ashcroft–Langreth structure factors, is
given by

"M(k) = FLaBr3(k) − FCeBr3(k) = KMM[SMM(k) − 1] + KMBrSMBr(k) (3.2)

where
KMM = cM(b

2
La − b2

Ce)

KMBr = 2bX
√
cMcBr(bLa − bCe).

(3.3)

Note that the SBrBr(k) partial structure factor is eliminated. Using tabulated scattering lengths
for La3+, Ce3+ and Br− [22] (table 2) gives values for KMM of 111.2 mb and KMBr of 200 mb
showing that the SMBr(k) partial accounts for 64% of "M(k).

The cation–anion correlations can be removed by forming the difference function "F ′(k)
defined as

"F ′(k) = FLaBr3(k) − [bLa/(bLa − bCe)]"M(k) = K∗
BrBr[SBrBr(k) − 1] − K∗

MM[SMM(k) − 1]

(3.4)



10394 F Hutchinson et al

where

K∗
MM = bLabCecM

K∗
BrBr = b2

BrcBr.
(3.5)

Table 3 lists the weightings of the partial structure factors in the two difference functions
for the two pairs of metal tribromides considered here. It can be seen that, in both cases,
the difference function has a substantial weighting from both partials. This contrasts with the
situation in the chlorides where, because of the different anion scattering lengths, the difference
function approximates to a single partial. Nevertheless, as we shall see, even the elimination
of one partial provides a useful additional comparison between experimental and simulated
data.

Table 3. Relative weightings of the three partial structure factors making the two difference
functions (equations (3.2) and (3.4)).

"M(k) "F ′(k)

La/Ce Y/Dy La/Ce Y/Dy

SMBr 64 49 0 0
SBrBr 0 0 78 51
SMM 36 51 22 49

3.1. LaBr3 and CeBr3

Figures 1(a) and 1(b) show the total structure factors for LaBr3 and CeBr3 compared with
the experimental values [3, 11]. Also shown are the partial structure factors weighted by
the concentrations and neutron scattering lengths (equation (3.1)). The shapes of the partial
structure factors for the two systems are very similar, as follows from the similarity of the cation
radii; the differences in the total structure factors arises from the different neutron scattering
lengths. For CeBr3 the Br–Br term is weighted more heavily with respect to the M–Br than
is the case for LaBr3. For both systems, the M–M partial makes only a small contribution to
the total. Each system shows a weak prepeak, whose position seems to be determined by a
cancellation of intensity between the M–M and M–Br partials.

Figures 2(a) and 2(b) show the difference functions "M(k) and "F ′(k). In both cases
the agreement with experiment is good both in terms of the peak positions and intensities.
The figures also show the appropriately weighted contributions of the two remaining partial
structure factors, as in equations (3.2) and (3.4), to indicate the degree of similarity between
the two difference functions and individual partial structure factors. The "M(k) difference
function largely reflects the SMBr(k) partial function since, although the weighting of SMM(k)

is relatively large compared to the corresponding chloride functions, SMM(k) is relatively
featureless beyond the principal peak. As a result, the effect of SMM(k) is primarily to reduce
the depth of the principal peak in "M(k) compared with SMBr(k). The weightings of SMM(k)

and SBrBr(k) in "F ′(k) are such that this function is very heavily dominated by SBrBr(k).
Indeed, figure 2(b) shows that the contribution of SMM(k) is only significant in the region of
the principal peak where the difference in position of the main peaks in SMM(k) and SBrBr(k)

leads to a slight shift of the main peak in "F ′(k), with respect to that in SBrBr(k), to a slightly
smaller scattering angle.
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Figure 1. Simulated total structure factors (solid line) compared with experiment (×: reference
[11]) for (a) LaBr3 and (b) CeBr3. The lower set of curves are the weighted contributions of the
three partial structure factors to the simulated total.

3.2. YBr3 and DyBr3

Figures 3(a) and 3(b) show the total structure factors for YBr3 and DyBr3 with the lower panels
showing the neutron-weighted partial structure factors. Again, the agreement with experiment
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Figure 2. Difference functions for the CeBr3/LaBr3 isomorphous pair. (a) "M(k). Key. ×:
experiment [11]; solid line: simulation; dashed line: weighted SMBr(k) contribution; dot–dashed
line: weighted SMM(k) contribution. (b)"F ′(k). Key. ×: experiment [11]; solid line: simulation;
dashed line: weighted SBrBr(k) contribution; dot–dashed line: weighted SMM(k) contribution.

is good for both systems, particularly in terms of the peak positions, though the intensity of
the prepeak appears to be exaggerated. The pattern of intensity in the Y and Dy systems is
very different to that seen in La and Ce, especially in the region of 2.5 → 4 Å−1, and this



SRO and IRO in molten metal tribromides 10397

0.0 2.0 4.0 6.0 8.0 10.0
k [Å

−1
]

−1.5

−1.0

−0.5

0.0

S
(k

)
Total (Simulated)
Total (expt.)
Br−Br
Y−Br
Y−Y

(a)

0.0 2.0 4.0 6.0 8.0 10.0
k [Å

−1
]

−3.0

−2.0

−1.0

0.0

S
(k

)

Total (Simulated)
Total (Experimental)
Br−Br
Dy−Br
Dy−Dy

(b)

Figure 3. As figure 1 but for (a) YBr3 and (b) DyBr3.

is not simply an artifact of the change in scattering lengths; it indicates a significant change
in the short-range order. As can be seen from an examination of the calculated partials in
the two cases, for Dy and Y, the principal peaks in the cation–cation and anion–anion partials
and the minimum in the cation–anion term occur at very similar positions (∼2.0 Å−1), so
strong cancellation occurs in the total structure factor, leaving only the broad maximum at
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2.5 → 4 Å−1 to which the cation–anion partial contributes most strongly. For La and Ce,
these first peaks are not coincident to the same degree, so the total structure factor has a true
principal peak at ∼2 Å−1. As we shall see below, these differences reflect the fact that the La
and Ce bromides belong to the high-coordination-number structural ‘step’ whereas the Y and
Dy systems are roughly six-coordinate.

Note too that the prepeak has become very prominent in both the experimental and
simulated structure factors. Contrary to the large-cation cases, La and Ce, the prepeak is
seen to arise from a distinctive feature in the partial structure factors which is particularly
prominent in the M–M and M–Br partials. The prepeak in the simulated pattern is narrower
and shifted to slightly higher k than in the experimental structure factor. It is likely that this
is attributable to system size effects, since the length scale of the intermediate-range order
indicated by the prepeak position (∼8 Å) is only about one third of simulation cell length,
and in similar studies of ScCl3 [9] a broadening and down-shifting of the prepeak position on
increasing the cell size was observed. It is also true that the low-k region is a difficult one
on which to obtain reliable experimental information: a measure of such uncertainties can be
gained by comparing the two experimental structure factors for YCl3 [6, 23] which are very
similar for k > 1.5 Å−1 but rather different at lower k.

Figures 4(a) and 4(b) show the difference functions "M(k) and "F ′(k) for YBr3 and
DyBr3 compared to experiment. Again, the agreement with experiment is very good. However,
the relative weightings of the two partials are, in both cases, approximately equal and, as a
result, these difference functions are certainly not dominated by a single partial function.
For "M(k) the principal peak, at �2 Å−1, is massively overdamped with respect to the
corresponding peak in SMBr(k) by the contribution from the corresponding peak in SMM(k).
Furthermore, the appearance of the FSDP in "M(k) is heavily dominated by the contribution
from SMM(k). However, as for LaBr3 and CeBr3, the relatively featureless nature of SMM(k)

beyond the principal peak means that "M(k) does largely reflect SMBr(k) at high scattering
angle. Analogous comments apply to "F ′(k) (figure 4(b)) with the intensity and position of
the principal peak significantly shifted from that of the pure SBrBr(k) partial function by the
considerable contribution from SMM(k).

As we noted in studies of the chlorides [7], it seems to be easier to demonstrate good
agreement between a calculated partial structure factor and an experimental difference function
than with a total structure factor. The total structure factor is very sensitive to the cancellation
between oscillating features in the partials, as witnessed, for example by the way the partials
contribute to the first peaks and also to the high-k structure in figures 1 and 3. Hence small
errors in the correlation lengths which are barely visible in the partials have a big effect on the
overall appearance of the total.

3.3. Isomorphisms between different halide systems

As we remarked in the introduction it is of interest to examine the extent to which the structures
of bromide systems resemble those of chlorides with roughly the same radius ratio. One
way of making this comparison is to combine the partial structure factors for the supposedly
isomorphous chloride system with the appropriate neutron scattering lengths for the bromide
and calculate a total structure factor which, under a uniform scaling of the scattering vector to
allow for the difference in size of bromide and chloride ions, is compared with the experimental
bromide structure factor.

Figure 5(a) shows the results of this procedure for YBr3 (ρ+− = 0.66) constructed from
both the partial structure factors for ScCl3 (ρ+− = 0.66), which might be expected to be
isomorphous, and those for CeCl3 (ρ+− = 0.82), which might not. The ScCl3 (CeCl3) partials
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Figure 4. As figure 2 but for the DyBr3/YBr3 isomorphous pair.

are weighted by the appropriate scattering lengths for YBr3 and the scattering vector of the
chloride system is multiplied by 0.93, which is the ratio of chloride to bromide ion radii used
in the simulation potentials.

The overall agreement between the ScCl3-derived total structure factor and the YBr3

experimental curve is excellent for, and beyond, the principal peak both in terms of the peak
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Figure 5. Total structure factors obtained from simulated partial functions using the scaling
procedure in the text for (a) YBr3, (b) CeI3

positions and intensities. Furthermore, the corresponding agreement with the CeCl3-derived
curves is relatively poor. The comparison therefore suggests a structural similarity between
ScCl3 and YBr3 and marked difference from the CeCl3 structure. The most notable discrepancy
between the YBr3- and ScCl3-derived structure factors is that the calculated prepeak is much
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sharper than the experimental one (by even more than for the directly simulated YBr3 structure
factor), though its position is quite good. Again, we would suggest that this would be improved
in simulations on larger samples.

Given the success of the above procedure, it is tempting to extend the analysis to molten
metal tri-iodides for which experimental structure factor information is available for LaI3,
CeI3 [11] and ScI3 [5]. Figure 5(b) shows the experimental total structure factor for LaI3

(ρ+− = 0.65 using σI− = 2.16 Å) compared to the functions scaled from YCl3 and CeCl3
respectively. The YCl3-derived function is in good agreement with the LaI3 experimental
function for the principal peak and larger scattering angles. The CeCl3-derived function is,
as would be expected from the scaling arguments, a much poorer fit to the LaI3 data. This is
an interesting example, showing that the structure type can change for a given cation. CeCl3
and CeBr3 clearly belong to the high-coordination-number structure type whereas this good
agreement of the LaI3 structure factor with the scaled YCl3 data shows that it belongs in the same
structure type as the approximately octahedrally coordinated systems. Furthermore, the clear
implication is that LaI3 (and also CeI3) undergoes a considerable structural transformation
on melting resulting from a significant change in coordination number from the crystalline
8 + 1 coordination (PuBr3 structure) to a liquid structure based around six-coordinate species.
Indeed, the experimentally determined liquid coordination numbers support such a drop in
coordination number [11] as does the relatively large volume change ("V/V � 24%).

The radius ratio for ScI3 (ρ+− = 0.52) is quite small; it is intermediate between those
of ScCl3 and FeCl3 amongst the chlorides. This is the region in which the melt coordination
number of the chlorides switches from about 6 to 4. The comparisons show that the structure
factor of ScI3 is somehow intermediate between the scaled ScCl3 and FeCl3 functions, but the
overall agreement is not as good as for the cases discussed above.

These comparisons suggest that the melt structures of the trivalent metal halides are
predominantly determined by the radius ratio. In the introductory section we noted that our
simulation potentials for the bromides were ‘transmuted’ from those for the chlorides by
changing the anion radius and the polarizability. It would appear from the dominant influence
of the radius ratio that the change of polarizability has had little effect. However, this may be an
oversimplified view, as the magnitude of the charge-induced dipole is affected by the distance
of closest approach of the cation and anion (approximately cubed) as well as by the magnitude
of the polarizability and the larger size of the heavier halides will counteract the tendency to
an increase in polarization effects arising from the increase of polarizability. Indeed, the ratio
of the polarizability to the ionic radius cubed for the halide ions is roughly constant. Hence,
the correct view may be that the increase in polarizability has served to maintain a similar
relationship between ion size and polarization effects in the different halide series.

4. Real-space structures

4.1. Comparison of radial distribution functions

By Fourier transformation of the experimental structure factor, F(k), the neutron-weighted
radial distribution function may be obtained:

G(r) = 1

2π2n0

∫ ∞

0
dk k

sin(kr)

k
F (k)

= b2
Mc

2
M(gMM − 1) + 2bBrbMcBrcM(gMBr − 1) + b2

Brc
2
Br(gBrBr − 1). (4.1)

The experimental and calculated values for this quantity are compared in figure 6 for the
isomorphous pairs LaBr3–CeBr3 and YBr3–DyBr3 respectively. Also shown are the separate
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Figure 6. Radial distribution functions compared with the experimental transforms for (a) LaBr3,
(b) CeBr3, (c) YBr3 and (d) DyBr3. Key: upper curves: ×: experiment; solid lines: simulated total
functions calculated directly from the partial rdfs; light solid lines: back-transforms of simulated
total structure factors. Lower curves: weighted partial rdf contributions.

(This figure is in colour only in the electronic version, see www.iop.org)

radial distributions obtained from the simulation, with the weights with which they contribute in
equation (4.1). Except for the width of the first peak ofG(r), which is considerably narrower in
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Figure 6. (Continued)

the simulation than in experiments, the agreement of the calculated and experimental quantities
is good. The observation of greatest interest which emerges from this comparison is that, in
favourable circumstances (scattering lengths), the experimental total rdfs do have features on
the high-r side of the second peak in G(r), which correspond to the first peak of the metal–
metal rdfs. Such a feature can clearly be seen in the DyBr3 and CeBr3 cases. The position of
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the M–M peak relative to the Br–Br is an important indicator of the nature of the links between
the coordination polyhedra surrounding the cations [14, 24]. Note that the distance between
these peaks is larger in the Ce case than in the Dy case (and also in La relative to Y in the
simulated rdfs), whereas the absolute position of the first peak in gBrBr is very similar for all
systems. On the other hand, the greater separation between the first peak of gMBr and gBrBr in
YBr3 and DyBr3 relative to LaBr3 and CeBr3 simply reflects the smaller cation size, and hence
the smaller radius of the first coordination shell.

The most notable difference between the experimental and simulated distribution functions
(figures 6(a)–6(d)) lies in the width (height) of the first peak. For all four systems the first peak
in G(r), attributable entirely to the anion–cation partial, is significantly too sharp. In part, this
problem is caused by the truncation of the experimental data in order to perform the Fourier
transform in equation (4.1). This is illustrated in figure 6(a) where, in addition to the simple
linear combination of rdfs indicated by equation (4.1) we show a G(r) obtained by Fourier
transformation of the simulated F(k) but with the reciprocal-space integral truncated at some
upper limit kc:

G(r) = 1

2π2n0

∫ kc

0
dk k

sin(kr)

k
F (k). (4.2)

The value of kc is chosen so as to reproduce the period of the spurious low-r oscillations which
are seen in the experimentalG(r) (no smoothing, or apodization has been performed in making
this transform). It is clear that this procedure brings the simulated and experimentalG(r)s into
better agreement as regards the first peak height—indicating that the experimental procedure
does broaden the first peak appreciably—however, it is also clear that it does not wholly remove
the problem and that the simulated first peak remains too narrow. An analogous, although less
pronounced, problem has already been observed for the metal trichlorides [7], and seems to
reflect a shortcoming of the cation–anion repulsive potential.

That this problem appears to have been exacerbated, in passing from chlorides to bromides,
can probably be traced back to the scaling procedures used to generate the short-range repulsion
potential (section 2.2). The metal trichloride repulsion potential has simply been multiplied
from the chloride potential by a constant factor to account for the increase in the anion radius, but
the shape of the repulsion has not been changed. This would necessitate changing the repulsive
wall ‘hardness’, i.e. also changing the parameter a in equation (2.1). The systematically greater
sharpness of the first peak in gMBr(r) relative to experiment is indicative of this repulsive wall
being too steep. It is clear, therefore, that the M–Br repulsion should decay more slowly with
separation than for the M–Cl ion pair, i.e. that a should be reduced. Such a trend is physically
reasonable considering the greater volume of the Br− anion.

In the interests of making the minimum number of changes to the potential, in order to
stress that the structures of a very wide range of trihalides are accounted for by its generic
form, we have not attempted to optimize the potential in this work. Future refinements should
attempt to produce a potential which will account for the x-ray diffraction and EXAFS structural
information, as well as the neutron data, and also for dynamical quantities such as the Raman
frequencies [25].

4.2. Coordination number analyses

Anions are assigned to the first coordination shells of individual cations if they lie within a
sphere of radius equal to the position of the first minimum in gMBr. Table 4 lists the simulated
mean cation–anion coordination numbers compared with experimental values obtained from
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Table 4. Coordination numbers of M3+ cations in the molten tribromides.

Mean CN Coordination number distribution

System MD Experiment 5 6 7 8

LaBr3 7.1 7.40 0 17.5 58.4 23.4
CeBr3 7.4 7.40 0 12.9 47.2 33.6
DyBr3 6.2 6.10 4.0 74.4 20.0 1.6
YBr3 6.2 6.00 5.6 74.4 17.6 2.4

G(r). Despite the differences in widths of the first peaks of the rdfs noted above (figures 6(a)–
6(d)), the agreement of the coordination numbers is good across the range of four systems.
In the melt both sets of chlorides show higher mean coordination numbers compared with the
corresponding bromides, consistent with the smaller Cl− ion radius.

Both YBr3 and DyBr3 are dominated by six-coordinate species with a significant minority
of seven-coordinate cations. LaBr3 and CeBr3 are mainly seven-coordinate with a large
minority of eight-coordinate sites. With respect to the crystal structures, the coordination
numbers for Dy and Y have increased slightly (from 6), and for La and Ce have decreased
from 9 (perhaps better described as 6+3 for the UCl3 structure). In the corresponding chlorides,
these differences parallel the change in density on melting. For DyCl3 and YCl3 only a tiny
volume change on melting is found, whereas for the systems melting from the UCl3 structure, a
significant increase in the volume ∼20% accompanies the coordination number decrease. The
density data for the bromides do not appear to be available for making the same comparison.
The local structures in the trivalent metal halides have often been discussed in terms of an
ideal octahedral coordination polyhedron; from this perspective, the additional halides in the
coordination shell (beyond 6) might be expected to be loosely coordinated outside the first
coordination shell. The simulations do not support this interpretation. The first peaks in gMBr

are narrow and show no sign of subsidiary structure. Furthermore, a bond-angle analysis may
be conducted on the ions in the first coordination shell and suggests that the coordination shell
simply expands to accommodate the ‘extra’ halide ions in a uniform way. For YBr3 and DyBr3

the bond-angle analysis of the geometry shows the local coordination polyhedra to be mainly
octahedra. For YBr3, for example, the most intense peak in the bond-angle distributions for
the Br–Y–Br triplets is at 81◦, compared with 90◦ for an ideal octahedron. The difference
between the observed bond angles and the ideal can be attributed to the distortions of the local
octahedral coordination polyhedra in those coordination shells which contain an ‘extra’ ion at
that instant. For LaBr3 the Br–La–Br distribution peaks at 74◦, and there is no evidence of
secondary structure other than for this main peak.

The examination of the first coordination shells therefore suggests that for YBr3 and DyBr3

the cations are predominantly octahedrally coordinated with occasional (∼20%) coordination
shells containing an additional anion. Similar analyses of the first coordination shell in ScCl3
[9], which has a slightly smaller cation:anion radius ratio, show that it is also predominantly
octahedral, but with a significant number of five-coordinate cations and almost no seven-
coordinate ones. Earlier, we showed that, despite this difference, the structure factors for YBr3

and DyBr3 closely resembled those obtained for ScCl3. This suggests that all these systems fall
into a class of octahedrally coordinated liquids with a common structure which is not strongly
affected by small departures of the mean coordination number from 6. In LaBr3 and CeBr3

the average coordination number is greater than 7, only occasional cations are six-coordinate
and the comparison of structure factors suggests that these liquids are qualitatively different
from the octahedrally coordinated ones.
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4.3. Inter-polyhedral linkages

Closer examination of the identities of ions involved, at some instant, in the coordination
shells of more than one cation provides information on the linkages between the coordination
polyhedra, and more insight into the structure types discerned above. Pairs of cations may be
identified which lie within the range of the first minimum in the cation–cation partial radial
distribution function. Bromide ions which bridge between such cations are those which lie
within the coordination shells of both cations. Note that this type of analysis is most suited
(for MX3 systems) to those cases where the dominant cation coordination number is 6 (YBr3

and DyBr3 here). In these cases, it follows from the stoichiometry that the average anion
coordination number is 2, so thinking of two cations linked by a single anion is natural. When
the mean cation coordination number is significantly higher than 6, at least some of the anions
have to be simultaneously coordinated to three or more cations which, as we shall see, causes
qualitative changes in the liquid structure.

The linkages between the coordination polyhedra may characterized by calculating the
number of anions simultaneously in the coordination shells of a given pair of cations—a single
anion is interpreted as corner-sharing, two anions as edge-sharing and three as face-sharing.
Table 5 lists the percentages of linkages for the YBr3 and DyBr3 systems. The data clearly
show that the edge-sharing units predominate. The proportions of vertex-, edge- and face-
sharing are greatly influenced by the anion polarization which leads to induced dipoles on the
bridging anions when the M–Br–M bond is bent. These induced dipoles screen the repulsive
M–M Coulombic interaction [14, 24], allowing a closer approach of the cations than would
be the case if polarization effects were omitted, and increasing the proportion of edge- over
vertex-sharing. In a series of systems with the same anion polarizability, the polarization
effects become most important for the smallest cations. This effect can be seen in contrasting
the positions of the first peaks of the MM and BrBr partial radial distribution functions for
La/Ce with those for Y/Dy. It can be seen that the first peak of gMM is much closer to that of
gBrBr in Y/Dy than in La/Ce. For LaBr3 and CeBr3 we can see that the proportion of edge-
sharing units has decreased relative to that for Y/Dy. Note, however, that because in this case
we are dealing with seven(/eight)-coordinate polyhedra, rather than octahedra, for which the
number of edge-sharing connections is necessarily higher, the decrease in the proportion of
edge-sharing units understates the influence of the diminished polarization effects

Table 5. Connectivity of MBrn species.

Connectivity

System Vertex Edge Face

DyBr3 32.0 60.8 7.2
YBr3 25.3 68.7 6.1

As well as influencing the distance of closest approach of the metal centres, these linkages
determine the intermediate-range order in the melt. Using the figures in tables 5 we see that a
Y3+ ion is connected, on average, to 6.2 Br− ions. Through vertex-sharing connection, the Y3+

is therefore connected (on average) to 6.2 × 0.183 other Y3+ ions, through edge-sharing to an
additional 6.2×0.757/2 and through face-sharing to a further 6.2×0.061/3, to give a total Y–Y
‘coordination number’ of 3.6. For Ce3+, we obtain 7.4×(0.47+0.47/2+0.06/3) = 5.4. Since
this exhausts the number of Br− ions to which the central cation is connected, these neighbours
will lie within a well-defined shell, and all other Y3+ ions must lie at substantially greater
distances away. If one imagines how to fill space with a network with such a low coordination
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number as 3.6, one can see that there must necessarily be some substantial inhomogeneities
(even a diamond lattice, with coordination number 4, has substantial holes). On the other hand,
with a coordination number of 5.4 a more uniformly space-filling network can be envisaged.
The signature of the greater inhomogeneity of the YBr3 and DyBr3 melts is the prominent
prepeak which appears in the structure factor. As we have argued elsewhere [26, 27], the
prepeak may be associated with the presence of voids in the spatial distribution of cations and
the position of the prepeak is related to the inter-void separation. The most extreme example is
ScCl3 where the mean cation–cation ‘coordination number’ is close to 3; the voids are readily
seen in snapshots of the atomic positions and result in an enormous prepeak at very low k [5].

Examination of molecular graphics snapshots of the ion positions in YBr3 and DyBr3

suggests chain-like structures constructed from connected edge-sharing octahedra [28]. To
examine whether such observations are statistically significant we construct a pair distribution
function to elucidate the structural correlations between the edge-sharing units. The four
ions (two octahedral cations and two bridging anions) constituting an edge-sharing unit are
identified and used to calculate the position of its centre (in an ideal edge-sharing unit a point
equidistant between the two cations along the vector joining them). The centres are then treated
analogously to the atomic positions and used to calculate the pair distribution function:

4πr2gEE(r) = V

2NE

NE∑
i=2

j=i−1∑
j=1

δ(|Ri − Rj | − r) (4.3)

where NE is the number of edge-sharing units in a configuration. Analogous functions
can be constructed for the corner-sharing and face-sharing units if required along with the
corresponding cross-correlations.

Figure 7 contrasts the edge–edge (EE) functions for CeBr3 and YBr3. The functions have
been plotted versus rnorm, which is the inter-centre separation divided by the position of the
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Figure 7. Edge–edge radial distribution functions for CeBr3 (solid line) and YBr3 (dashed line) as
discussed in the text.
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first peak in the cation–cation radial distribution function. A linear chain of edge-sharing units
would give a peak in the distribution function close to rnorm = 1, and other arrangements of the
edge-sharing units would also produce peaks at characteristic values of rnorm. It can be seen
from the figure that the functions for YBr3 and CeBr3 differ from each other markedly. The
CeBr3 shows a large peak corresponding to adjacent edge-sharing units around the coordination
polyhedron with a M–Br bond involved in two edge-sharing connections. Note that this unit
involves a three-coordinate anion which, as we indicated above, will only be a common feature
for liquids in which the cation coordination number is greater than 6. The CeBr3 also shows
peaks corresponding to other non-adjacent edge-sharing connections. The overall impression
is that there is no strong constraint on the relative positions of these connections; one might
think of coordination polyhedra simply being stacked together and the connections being made
to accommodate the available anions. In YBr3, on the other hand, a specific arrangement of
non-adjacent edge-sharing connections seems to be strongly preferred. This arrangement may
connect a series of polyhedra leading to a characteristic percolating chain structure.

Figure 8 shows a snapshot of the YBr3 fluid structure, where the points mark the positions
of the centres of the edge-sharing units and ‘bonds’ are drawn between them if their separation
is less than 8.2 au—which corresponds to the position of the first maximum in gYY. The figure
highlights the existence of a percolating chain structure in which the cations are connected
by edge-sharing. This structure is characteristic of the near-octahedrally coordinated trivalent

Figure 8. A molecular graphics ‘snapshot’ of the edge-sharing units in a single YBr3 configuration
highlighting the chain-like nature of the inherent structure.
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metal halides that we have simulated and responsible for the pronounced IRO exhibited in the
diffraction data.

5. Conclusions

The structures of the tribromides obtained with polarizable-ion potentials derived by
systematically changing the anion radius and polarizability in the potentials previously used
for the trichlorides seem to agree quite satisfactorily with the available experimental data. It
would seem that the structures of the trihalide melts fall into three distinct structure classes,
depending on the ratio of cation and anion radii and independent of the specific cation and
anion involved. For a large radius ratio, a (7–8)-coordinate cation is found and the relative
arrangements of these coordination polyhedra around neighbouring cations show no particular
pattern; the polyhedra seem simply to pack together. The systems which form these liquids
exhibit the nine-coordinate UCl3 structure in the solid phase. For a wide range of intermediate
radius ratios a family of structures based upon more-or-less six-coordinate cations arises.
These approximately octahedral units exhibit a marked tendency to edge-share so as to form
extended and cross-linked chains. This structural motif seems quite stable against variations
in the actual mean coordination number from about 6.5 to 5.5. Most systems within this
class exhibit the six-coordinate YCl3 (or BiI3) crystal structure, but some systems melt into it
from higher-coordinate crystal structures, like the (8 + 1)-coordinate PuBr3 structure. For still
smaller radius ratios, quasi-molecular fluids based on four-coordinate cations are found, as in
AlCl3. Again, several of these systems melt from six-coordinate crystals. It would seem that
the general rule [1,2]—that ionic materials exhibit the same local structure across the melting
transition—encounters a number of exceptions in the trihalides.
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